Markov Chain II

Aug 1, 2022

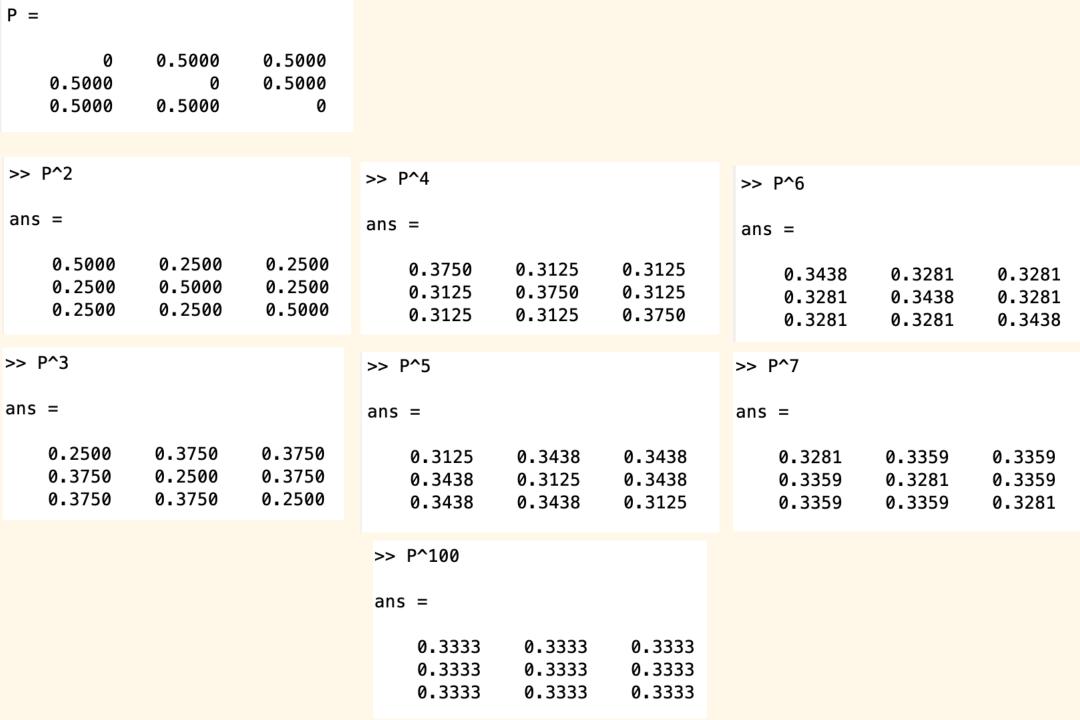
Markov Chain review

- Markov Property
- State Space
- Transition Probability
- Balance Equation
 - Invariant distribution (aka, stationary distribution, steady state distribution
- Irreducible MC has unique Invariant distribution
- Irreducible and aperiodic MC has $\pi_n \to \pi$, $n \to \infty$
- Long- term fraction of time of state i

$$\lim_{N\to\infty} \left\{ \frac{1}{N} \mathbb{I} \{ X_n = i \} \right\} = \pi(i)$$

Given an irreducible MC, if it contains self loop, then it is aperiodic

- The reserve is not true.
 - counterexample, random walk on a triangle



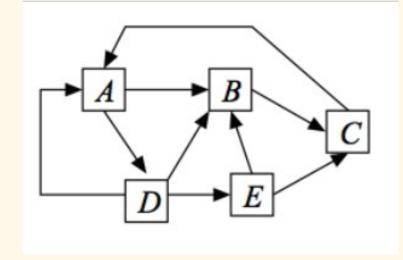
Given an irreducible MC, if it is aperiodic, then $\pi_n \to \pi$, $n \to \infty$

- The reserve is not true
 - Counterexample: random walk on a square

>> P^2			
ans =			
0.5000	0	0.5000	0
0	0.5000	0	0.5000
0.5000	0	0.5000	0
0	0.5000	0	0.5000

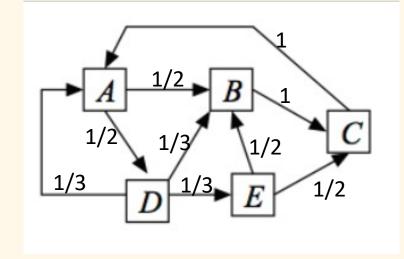
A MC with outgoing arrows are equally likely

- 1) Is it irreducible?
- 2) Write transition probability
- 3) What's the most frequently visited state?



A MC with outgoing arrows are equally likely

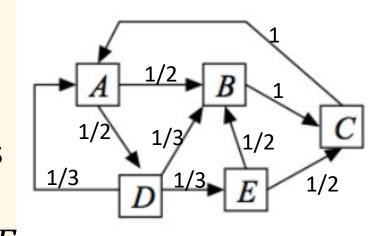
- 1) Is it irreducible?
- 2) Write transition probability
- 3) What's the most frequently visited state?



Start at A, how many steps does it take to reach E?

Hitting time of E starting at i is defined as

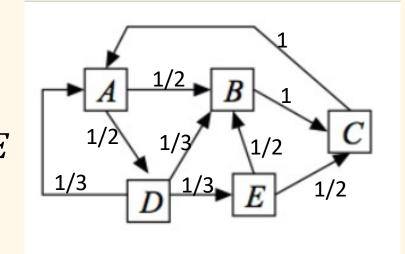
$$\beta(i) \coloneqq \mathbb{E}(T_E | X_0 = i) \text{ for } i = A, B, C, D, E$$



Goal: to calculate $\beta(A) \coloneqq \mathbb{E}(T_E | X_0 = A)$

Hitting time of E starting at i is defined as

$$\beta(i) := \mathbb{E}(T_E | X_0 = i) \text{ for } i = A, B, C, D, E$$

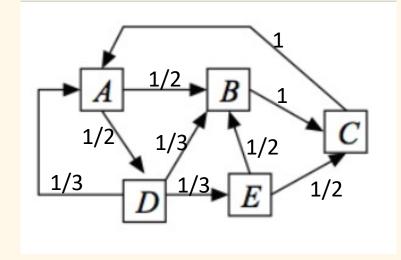


Goal: to calculate $\beta(A) \coloneqq \mathbb{E}(T_E | X_0 = A)$

Flip a fair coin, how many times on average you need to flip to get two head in a row?

Toss a fair 6 face dice, on average, how many times we need to toss until we have the product of two number in a row is 12?

Example 1.



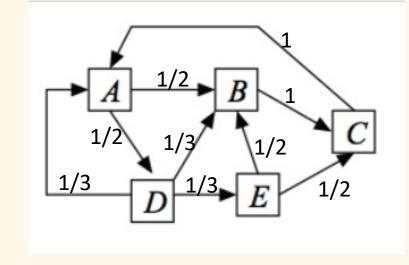
What's the probability that we start at A and we visit C before we visit E

Define:

$$\alpha(i) := \mathbb{P}(T_c < T_E | X_0 = i)$$
 for $i = A, B, C, D, E$

Goal: to calculate $\alpha(A) := \mathbb{P}(T_c < T_E | X_0 = A)$

$$\alpha(i) := \mathbb{P}(T_c < T_E | X_0 = i)$$
for $i = A, B, C, D, E$



Goal: to calculate
$$\alpha(A) := \mathbb{P}(T_c < T_E | X_0 = A)$$

General First Step Equation (1)

For a Markov Chain on state space $S = \{1, 2, ..., K\}$ with transition probability P, let T_i be the hitting time of state i.

For a set $A \subset S$ of states, let $T_A = \min \{n \geq 0 | X_n \in A\}$ be the hitting time of the set A.

1) We consider the mean value of T_A

General First Step Equation (2)

For a Markov Chain on state space $S = \{1, 2, ..., K\}$ with transition probability P, let T_i be the hitting time of state i.

For a set $A \subset S$ of states, let $T_A = \min \{n \geq 0 | X_n \in A\}$ be the hitting time of the set A.

2) We consider the probability of hitting set A before B

General First Step Equation (3)

3) We consider collecting an amount of h(i) every time visiting state i before visiting state A

$$Y = \sum_{n=0}^{T_A} h(\boldsymbol{X}_n)$$

General First Step Equation (4)

4) We consider a discount factor β for moving one step

$$Z = \sum_{n=0}^{T_A} \beta^n h(X_n)$$