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Markov Chain review

* Markov Property
* State Space
* Transition Probability

e Balance Equation

 Invariant distribution (aka, stationary distribution, steady state distribution

* [rreducible MC has unique Invariant distribution
* Irreducible and aperiodic MChas ,, - m,n —»

* Long- term fraction of time of state i

lim {3 I{X, = i}} = 7 (D)



Given an irreducible MC, if it contains self loop, then it is aperiodic

* The reserve is not true.
* counterexample, random walk on a triangle
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Given an irreducible MC, if it is aperiodic, then ,, = m,n — ©©

* The reserve is not true
* Counterexample: random walk on a square
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Example 1

A MC with outgoing arrows are equally likely
1) Is it irreducible?
2) Write transition probability
3) What’s the most frequently visited state?




Example 1

A MC with outgoing arrows are equally likely
1) Is it irreducible?
2) Write transition probability
3) What’s the most frequently visited state?
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Start at A, how many steps does it take to reach E?

1[2. B

Hitting time of E starting at i is defined as
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B(i) == E(Tz|X, = i) fori=A4,B,C,D,E

Goal: to calculate f(A) = E(Tg|X, = A)
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Hitting time of E starting at i is defined as "

L) =E(Tg|X, =1i) fori=AB,C,D,E Y2\, 1/ b\1/2 ¢
1/3 pHEs g1 12

Goal: to calculate f(A) = E(Tg|X, = A)



Example 2

Flip a fair coin, how many times on average you need to flip to get
two head in a row?



Example 3

Toss a fair 6 face dice, on average, how many times we need to toss
until we have the product of two number in a row is 127
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What'’s the probability that we start at A and we visit C

before we visit E

Define:

a(i) = P(T, < Tg|X, = i) fori=AB,C,D,E

Goal: to calculate a(A) = P(T, < Tg|X, = A)

1/2




Example 1 2 F
a(i) =P(T, < Tg|X, =) 2\, 1/ \1/2 ¢

fori =A,B,C,D,E

Goal: to calculate a(A) = P(T, < Tg|X, = A)



General First Step Equation (1)

For a Markov Chain on state space S = {1,2, ..., K} with transition probability

P, let T; be the hitting time of state i.
For aset A C S of states, let Ty = min {n = 0|X,, € A} be the hitting time of

the set A.

1) We consider the mean value of T



General First Step Equation (2)

For a Markov Chain on state space S = {1,2, ..., K} with transition probability
P, let T; be the hitting time of state i.

For aset A C S of states, let Ty = min {n = 0|X,, € A} be the hitting time of
the set A.

2) We consider the probability of hitting set A before B



Not required *

General First Step Equation (3)

3) We consider collecting an amount of h(i) every time visiting state i before

visiting state A
Tx
y = 2 h(X,)
n=0



Not required *

General First Step Equation (4)

4) We consider a discount factor 8 for moving one step
Ta

Z= ) [Th(Xy)

n=0






